Digital Analog Converter-数模转换(又叫解码器)
数模转换就是将离散的数字量转换为连接变化的模拟量,实现该功能的电路或器件称为数模转换电路,通常称为D/A转换器或DAC(Digital Analog Converter)。我们知道数分可为有权数和无权数,所谓有权数就是其每一位的数码有一个系数,如十进制数的45中的4表示为4×10,而5为5×1,即4的系数为10,而5的系数为1, 数模转换从某种意义上讲就是把二进制的数转换为十进制的数。 最原始的DAC电路由以下几部分构成:参考电压源、求和运算放大器、权产生电路网络、寄存器和时钟基准产生电路,寄存器的作用是将输入的数字信号寄存在其输出端,当其进行转换时输入的电压变化不会引其输出的不稳定。时钟基准产生电路主要对应参考电压源,它保证输入数字信号的相位特性在转换过程中不会混乱,时钟基准的抖晃(jitter)会制造高频噪音。二进制数据其权系数的产生,依靠的是电阻,CD格式是16bit,即16位。所以采用16只电阻,对应16位中的每一位。参考电压源依次经过每个电阻的电流和输入数据每位的电流进行加权求和即可得出模拟信号。这就是多比特DAC。
多比特与1比特的区别之处就是,多比特是通过内部精密的电阻网络进行电位比较,并最终转换为模拟信号,好处在于高的动态跟随能力和高的动态范围,但是电阻的精度决定了多比特转换器的精度,要达到24bits的转换精度,对电阻的要求高达0.000015,即便是理想的电阻,其热噪音形成的阻值波动都会大于此值,多比特系统目前广泛采用的是R-2R梯形电阻网络,对电阻的精度要求可以降低,但即便如此,理想状态的电阻达到的转换精度也不会达到24bits,23bits已经是极限多比特系统的优点在于设计简单,但受制于电阻的精度,成本也高 单比特的原理:依靠数学运算的方法在CD的脉冲代码信号(PCM)中插入过取样点,插入7个取样点就是18倍过取样,这些插入的取样点与原信号通过积分电路进行比较,数值大的就定为1,数值小的就定为0,原先的PCM信号就变成了只有1和0的数据流,1代表数据流较密集,0代表数据流较稀疏,这就是脉冲密度调制信号(PDM),脉冲密度调制信号经过一个开关电容网络构成的低通滤波器,1就转换为高电压信号,0就转换为低电压信号,然后通过级联积分,最终转换为模拟信号。插入取样信号会制造出许多高频噪音,所以还要经过一个噪音整形电路处理,将这些噪音推移到人耳听不到的频域。 |